o1方法性能无上限!马腾宇等证明:推理token够多,就能解决问题

  发布时间:2025-12-03 16:18:58   作者:玩站小弟   我要评论
克雷西 发自 凹非寺量子位 | 公众号 QbitAIOpenAI用o1开启推理算力Scaling Law,能走多远?数学证明来了:没有上限。斯隆奖得主马腾宇以及Google Brain推理团队创建者D 。

克雷西 发自 凹非寺
量子位 | 公众号 QbitAI

OpenAI用o1开启推理算力Scaling Law,方法性能走多远?

数学证明来了:没有上限。上限

斯隆奖得主马腾宇以及Google Brain推理团队创建者Denny Zhou联手证明,马腾江门市某某电子打标设备业务部只要思维链足够长,证明Transformer就可以解决任何问题!推理



通过数学方法,解决他们证明了Transformer有能力模拟任意多项式大小的问题数字电路,论文已入选ICLR 2024。方法性



用网友的上限话来说,CoT的马腾集成缩小了Transformer与图灵机之间的差距,为Transformer实现图灵完备提供了可能。证明



这意味着,推理神经网络理论上可以高效解决复杂问题。解决

再说得直白些的问题话:Compute is all you need!



CoT让Transformer运行更高效

首先需要说明的方法性是,“可以解决任何问题”是一个通俗化的表述,严格来说,论文的核心结论是思维链(CoT)能够显著提升Transformer的表达能力。

作者首先通过理论分析,提出对于固定深度、多项式宽度、江门市某某电子打标设备业务部常数精度的Transformer模型,如果不使用CoT,其表达能力将受限于AC0问题类别。(AC0是一类可以在并行计算中高效解决的问题,但不包括需要复杂序列化计算的问题。)

在固定指数位的情况下,固定深度、对数精度的Transformer模型即使引入了正确的舍入操作,其表达能力也仅限于TC0问题类别。

但当引入CoT时,固定深度、常数精度的Transformer模型就能够解决任何由大小为T的布尔电路解决的问题。

这表明CoT显著扩展了模型的表达能力,使其能够处理更复杂的问题。



为了验证理论分析,论文在四个核心问题上进行了实验,考虑了基础(base)、CoT和提示(hint)三种不同的训练设置:

  • 模运算(Modular Addition):并行计算问题,论文展示了CoT如何提高模型在这个问题上的准确性;
  • 置换群组合(Permutation Composition):需要序列化计算的问题,论文证明了CoT在解决这类问题上的有效性;
  • 迭代平方(Iterated Squaring):典型的序列化计算问题,论文展示了CoT如何使模型能够有效地解决这类问题;
  • 电路值问题(Circuit Value Problem):这是一个P完全问题,论文证明了即使是在模型深度较低的情况下,CoT也能使模型能够解决这类问题。

首先在可并行的模运算问题上,输入是若干个模7的数,输出是它们的模7和。

实验结果表明,所有设置下的Transformer都能够学习模加;但在较长序列(如n=16)上,CoT的优势更加明显。

这说明即使是可并行问题,CoT也能带来一定的效率提升。



在内在串行的置换群复合任务上,输入是S_5置换群中的若干个置换,输出是它们的复合结果。

结果,CoT提高了低深度模型的准确性——

不使用CoT的Transformer即使深度较大也难以学习该任务(准确率约20%),而使用CoT后即使是1层Transformer也能轻松学习(准确率100%)。



对于迭代平方任务,输入是一个质数p、一个整数r和若干个“^2”符号,输出是r^(2^k) mod p。

实验结果与置换群复合任务相似:不使用CoT时。即使16层Transformer也难以学习;而使用CoT后。1层Transformer就能完美求解。

这再次验证了理论分析,即迭代平方是内在串行的,需要CoT来提供必要的计算能力。



最后的电路值问题,输入是一个随机布尔电路的描述,输出是电路的最终输出值。

实验结果表明,在基准设置下,4层Transformer的准确率约为50%,8层约为90%,16层接近100%;

而使用CoT后,1层Transformer就能达到接近100%的准确率。

这验证了理论结果,即CoT赋予了Transformer任意电路的模拟能力,使其能够解决电路值问题这一P完全问题。



CoT+Transformer模拟门电路

除了上述实验,作者还对以下结论进行了理论证明:

对于任意一个可以用多项式大小的布尔电路计算的函数,都存在一个仅有常数层数的Transformer,可以通过足够多步数的思维链(CoT)来模拟电路的计算过程,从而计算出这个函数。

证明的思路是先将布尔电路视为一系列逻辑门的组合,然后利用Transformer中的位置编码为每个逻辑门及其状态分配一个独特的表示,进而通过逐步计算来模拟整个电路的执行过程。

这个证明的关键,在于利用CoT来逐步模拟电路中每个门的计算



具体而言,对于一个有T(n)个门的电路,作者设计了一个4T(n)个token的输入序列。

这个序列包含了电路的完整描述,每个门用4个连续的token表示:门类型、两个输入门的索引和当前门的索引,并用输入序列中的第一个token指示了电路的输入值。

然后,作者构造了一个常数深度的Transformer,这个Transformer的嵌入维度只需要O(log n),就足以对T(n)个门进行编码。

在第一层,Transformer读取输入序列,并将电路的描述信息存储到其位置嵌入中。

接下来是关键的CoT步骤。Transformer逐步生成4T(n)个token的思维链,每4个token对应电路中的一个门。

对于第i个门,Transformer执行以下操作:

  • 利用注意力机制获取两个输入门的计算结果:如果输入门是电路的输入,可以直接从输入序列中读取;如果输入门是前面计算过的中间结果,则可以从思维链的对应位置读取。
  • 根据门的类型(与、或、非等),用前馈网络计算当前门的输出。
  • 将当前门的输出写回到思维链中,作为后续门的输入。

通过这一过程,Transformer逐步模拟了电路中每一个门的计算,并将中间结果存储在思维链中。在生成完整个思维链后,最后一个门的输出就对应了电路的最终输出。

也就是说,通过将电路“展开”为一个长度为O(T(n))的思维链,即使固有深度很浅,Transformer也可以逐步执行电路中的计算。

在此基础上,作者进一步证明,具有O(T(n))长度CoT的常数深度Transformer,可以模拟任意T(n)大小的电路,因此其计算能力等价于多项式大小电路

理论打通了,实际可行吗?

能够模拟电路的计算过程,意味着CoT+Transformer能够解决可计算问题。

同时,这也说明只要有足够的CoT思考时间,大模型不需要扩展尺寸也能解决复杂问题。



有专业人士用一篇长文解释了CoT和图灵完备性之间的关系:

如果没有CoT,Transformer仅限于执行AC0复杂度类中的可并行任务;
CoT推理从根本上改变了这一格局,它使Transformer能够通过中间推理token处理串行计算,从而增加计算深度并允许模型模拟AC0以外的更深层次的电路。
这一进步将Transformer带入了P/poly领域,即多项式大小电路可以解决的问题类型。
理论上,只要有足够的CoT步骤,Transformer就可以模拟多项式大小电路可以执行的任何计算,从而缩小了Transformer与图灵机之间的差距。
但实际限制仍然存在,例如有限的上下文窗口和计算资源。要充分利用这一潜力,需要仔细的模型设计和优化。



还有人把这项成果和OpenAI的“草莓”,也就是爆火的超强模型o1联系到了一起——

草莓同样也是思考的时间越长,准确性越高,按照这个思路,只要有好的模型,就能解决人类面临的一系列难题。



甚至有人表示,如果这项研究是真的,那么AGI就已经在到来的路上了……



不过也有人认为,这只是一个理论性的结果,距离实际应用还存在很大差距。

即使抛开理论与实际条件的不同,时间和成本问题就是一个重要的限制因素。



而且实验的一个假设是模型权重被正确设置,但实际模型的训练很难达到这一程度。



还有人指出,这种模拟门电路运算,并不是大模型实际学习和工作的方式。



换言之,如何将实际问题用布尔电路表示,是Transformer从能解决运算问题到能够解决实际问题的一个关键。

但现实中,诸如“如何治疗癌症”这样的问题,很难以电路的形式去描述。



虽然距离实际应用还有一系列问题要解决,但这项研究至少揭开了CoT的巨大潜力。

作者简介

本论文一共有四名作者,全部都是华人。

按署名顺序,第一位作者为清华姚班校友李志远,是普林斯顿博士、马腾宇的博士后,现为芝加哥丰田技术学院(TTIC)的终身教授助理教授。

第二位作者是Hong Liu,也是马腾宇的博士生,现在在读,本科就读于清华,曾获得特等奖学金及优秀毕业生荣誉。

第三位是Google Brain推理团队创建者Denny Zhou,中科院博士,2017年加入Google前在微软担任了11年的高级研究员。

最后是2021年斯隆奖得主、斯坦福大学助理教授马腾宇,他是姚班校友、陈丹琦的同班同学。

论文地址:
https://arxiv.org/abs/2402.12875
参考链接:
[1]https://x.com/denny_zhou/status/1835761801453306089
[2]https://www.reddit.com/r/singularity/comments/1fiemv4/denny_zhou_founded_lead_reasoning_team_at_google/

相关文章

  • 新华鲜报·“十四五”发展亮点

      强大国内市场是中国式现代化的战略依托。“十五五”规划建议提出,“坚持扩大内需这个战略基点”“增强国内大循环内生动力和可靠性”。  回望“十四五”,一个数字十分亮眼:86.4%!  这是2021年至
    2025-12-03
  • 双方仍存在重大分歧,中方邀欧盟派技术团队来华磋商

      [环球时报驻法国、德国特派特约记者 尚凯元 青木 于文]经过20多天的磋商,中方赴布鲁塞尔就欧盟对华电动汽车加征反补贴税进行谈判的技术团队10月12日返回国内。中国商务部12日发布答记者问表示,自
    2025-12-03
  • 以色列国防军调整防御指示 多地放宽活动限制

      当地时间12日晚,以色列国防军宣布,根据对目前局势的评估,从当天20时开始调整本土守备司令部的防御指示。放宽针对该国北部边境和以色列控制的戈兰高地的限制,允许当地社区开展教育活动。  此外,放宽以
    2025-12-03
  • 安理会:联合国维和人员及场所绝不应成为被攻击目标

      当地时间10月14日,联合国安理会成员国发表联合声明,就黎巴嫩和以色列的“蓝线”边界持续冲突、导致联黎部队营地遭到攻击以及数名维和人员受伤表达强烈关切,呼吁各方尊重维和人员和联合国场所的安全与安保
    2025-12-03
  • 我打赌,没几个人能戴对套套!

    附录:1、每年9月26日为“世界避孕日”,其愿景为“建立一个没有意外妊娠的世界”。据世界卫生组织WHO)估计,每年全世界大约有2500万到5500万次人流,在我国,每年接受人工流产手术的女性约有800
    2025-12-03
  • 走路好还是跑步好?到底哪个健康益处更大?答案出乎意料!

    “走路”和“跑步”无疑是日常生活中最为普遍的2种锻炼方式,它们不受时间与场地的限制,随时随地都能进行。然而,有些跑步爱好者认为,走路的运动强度低,达不到锻炼身体的目标;不仅如此,许多热衷于走路或健步走
    2025-12-03

最新评论

udwa.dslgw.aln.laoying.sbs